
管道式风速变送器(485型)

VMS-3009TH-FS-N01 Ver 2.0

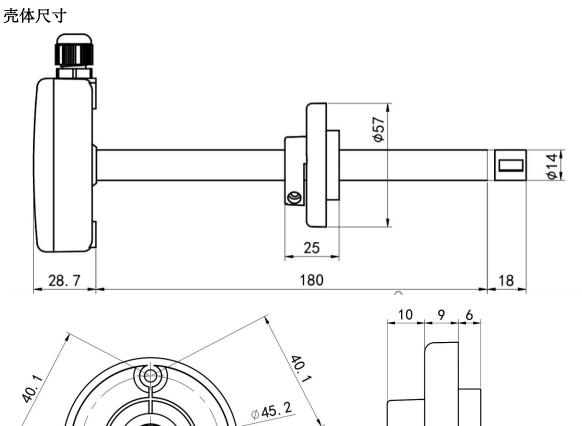
目录

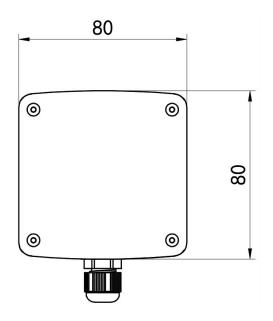
第	1 章 产品简介	4
	1.1 产品概述	4
	1.2 功能特点	4
	1.3 主要参数	4
	1.4 系统框架图	
	1.5 产品选型	7
第	2 章 硬件连接	8
	2.1 设备安装前检查	8
	2.2 接口说明	8
	2.2.1 传感器接线	8
	2.3 安装方式	9
第	3 章 配置软件安装及使用	10
	3.1 传感器接入电脑	10
	3.2 传感器监控软件的使用	10
第	4 章 通信协议	.11
	4.1 通讯基本参数	.11
	4.2 数据帧格式定义	.11
	4.3 寄存器地址	12
	4.4 设备地址设置方式	
	4.5 通讯协议示例以及解释	
	4.5.1 读取设备地址 0x01 的风速值	
	4.5.2 读取设备地址 0x01 的当前管道截面积	
	4.5.3 设置设备地址 0x01 的管道截面积 200 平方厘米	
	4.5.4 读取设备地址 0x01 的当前风量整数值	
	4.5.4 读取设备地址 0x01 的当前风量浮点型值	
第	5 章 常见问题及解决方法	15

第 1 章 产品简介

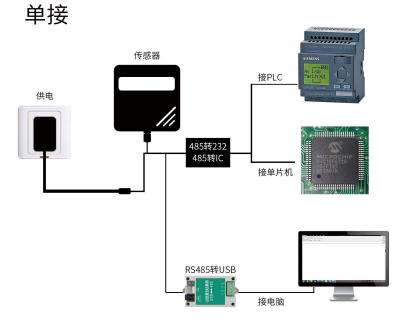
1.1 产品概述

该变送器是为了对管道风速进行测量而设计。我司自主研发的高精度风速测量单元反应灵敏,能快速准确地测量微小风速,具有稳定性好、漂移小、精度高等特点。该变送器能根据设置测量的管道截面积计算实时风量值。管道式采用安装方式,现场安装方便。产品采用抗干扰电路设计,可经受住现场变频器等各种强电磁干扰,设备采用进口免螺丝端子接线,使用更方便。

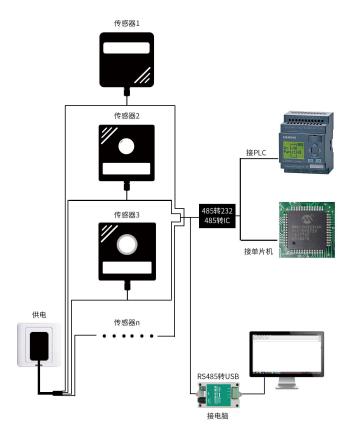

1.2 功能特点


- 高精度风速测量单元,启动风速小,反应灵敏,可适用于通风管道、油烟管 道等环境恶劣的场合
- 采用公司自主研发的全量程二次标定方法,线性度好,准确度高
- 开孔式法兰盘安装,采用高品质硅胶密封圈,漏风小,经久耐用
- 测量管道截面积可设置,根据设定的管道截面积上传实时风量值
- 485 通信接口,标准 ModBus-RTU 协议,通信地址、波特率可设置,通信线最长可达 2000 米
- 设备地址支持软件配置和拨码开关设置两种方式
- 量程 0~10m/s 的精度为± (0.1+2%FS); 量程 0~15m/s, 0~20m/s, 0~30m/s 的精度± (0.2+2%FS) m/s
- 接线端子采用进口兔螺丝端子,无需工具,只要一压一插即可接线
- 采用专用的 EMC 抗干扰器件,可经受住现场变频器等各种强电磁干扰
- 有直流、交直流两种供电选型,且可实现远距离集中供电
- 带有风速标识方向,便于现场安装

1.3 主要参数


直流型设备电源	10-30V DC		
交直流型设备电源	24V(-20%~+10%)AC/19-30V DC		
E -1	直流型	0.5W	
最大功耗	交直流型	2.4W	
测量介质	空气、氮气、油烟废气		
精度	± (0.2+2%FS) m/s -10°C~+50°C		
变送器电路工作温度			
通信协议	ModBus-RTU 通信协议		

输出信号	485 信号	
风速显示分辨率	0.1m/s	
响应时间	2s	
长期稳定性	≤0.1m/s/y	
参数设置	通过软件设置	



1.4 系统框架图

本产品也可以多个传感器组合在一条 485 总线使用,理论上一条总线可以接 254 个 485 传感器,另一端接入带有 485 接口的 PLC、通过 485 接口芯片连接单片机,或者使用 USB 转 485 即可与电脑连接,使用我公司提供的传感器配置工具进行配置和测试(在使用该配置软件时只能接一台设备)。

多接

1.5 产品选型

VMS-						公司代号
	3009ТН-					一体式管道売 (无显示)
	3009THOLED-				带 OLED 屏幕显示	
	3009FH-					分体式管道壳 (无显示)
	3009FHOLED-				带 OLED 屏幕显示	
		FS-		风速变送、传感器		
			N01-			485 输出
				空		直流供电
				AC-		交直流供电
					空	不带显示
					OLED	带 OLED 显示

第 2 章 硬件连接

2.1 设备安装前检查

设备清单:

■ 变送器设备1台

■ 自攻螺丝和膨胀塞各3个

■ 合格证、保修卡

2.2 接口说明

直流型: 宽电压 10~30V 直流电源输入;

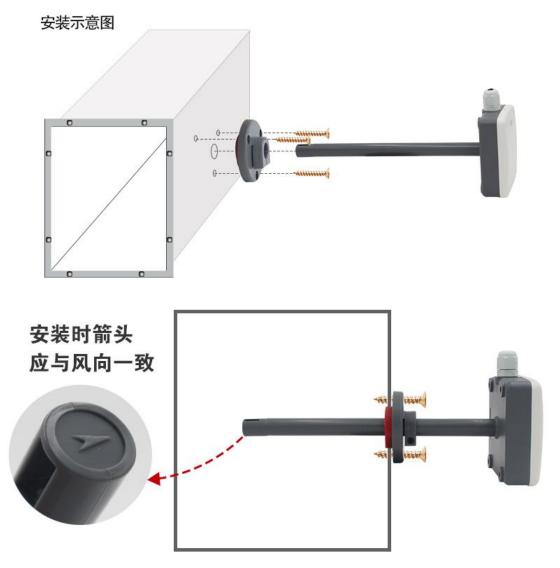
交直流型: 直流电压 19~30V 电源输入,交流电压 24V(-20%~+10%)电源输入。 485 信号线接线时注意 A\B 两条线不能接反,总线上多台设备间地址不能冲突。

2.2.1 传感器接线

直流型设备:

序号	内部标识	说明
1	A	485-A
2	V+	电源正
3	GND	电源负
4	В	485-B

交直流型设备:

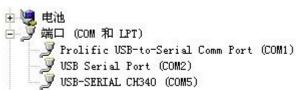

序号	内部标识	说明
1	A	485-A
2	V+	AC/电源正
3	V-	AC/电源负
4	В	485-B

2.3 安装方式

注意需要在管道的侧面或者下面安装,不能采用从上至下安装方式。

先在通风管道上打一个直径 20mm 的孔,将风管插入到孔中,调整设备的方向使设备的箭头方向与风速的方向一致,可以通过调节法兰盘的位置控制设备的高低。将三个螺丝安装到法兰盘上,固定设备,完成安装。

安装示意图如下图所示:

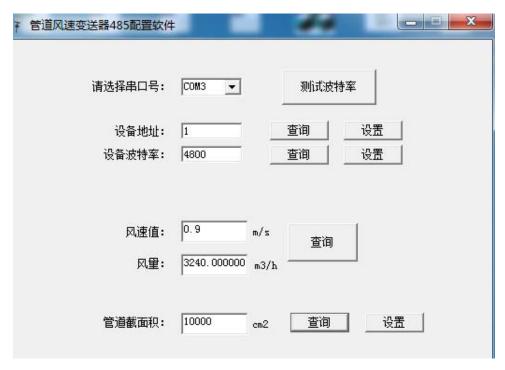

第 3 章 配置软件安装及使用

我司提供配套的"485参数配置软件",可方便的使用电脑读取传感器的参数,同时灵活修改传感器的设备 ID 和地址。

注意,使用软件自动获取时需要保证485总线上只有一个传感器。

3.1 传感器接入电脑

将传感器通过 USB 转 485 正确的连接电脑并提供供电后,可以在电脑中看到正确的 COM 口("我的电脑—属性—设备管理器—端口"里面查看 COM端口)。



打开资料包,选择"调试软件"---"485参数配置软件",找到 **西**宣软件 打开即可。

如果在设备管理器中没有发现 COM 口,则意味您没有安装 USB 转 485 驱动(资料包中有)或者没有正确安装驱动,请联系技术人员取得帮助。

3.2 传感器监控软件的使用

- ① 配置界面如图所示,首先根据 3.1 章节的方法获取到串口号并选择正确的串口。
- ② 点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波特率为4800bit/s,默认地址为0x01。
- ③ 根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。
- ④ 如果测试不成功,请重新检查设备接线及485驱动安装情况。

第 4 章 通信协议

4.1 通讯基本参数

编码	8 位二进制			
数据位	8 位			
奇偶校验位	无			
停止位	1 位			
错误校验	CRC (冗余循环码)			
波特率	1200bit/s、2400bit/s、4800bit/s、9600bit/s、19200bit/s、38400bit/s、57600bit/s、115200bit/s 可设,出厂默认为 4800bit/s			

4.2 数据帧格式定义

采用 ModBus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 = 1 字节

功能码 = 1 字节

数据区 = N 字节

错误校验 = 16 位 CRC 码

结束结构 ≥4 字节的时间

地址码:为变送器的地址,在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码: 二字节的校验码。

主机问询帧结构:

地址码	功能码	寄存器起始地址	寄存器长度	校验码低位	校验码高位
1 字节	1字节	2 字节	2 字节	1 字节	1字节

从机应答帧结构:

地址码	功能码	有效字节数	数据一区	第二数据区	第 N 数据区	校验码
1字节	1字节	1 字节	2 字节	2 字节	2 字节	2 字节

4.3 寄存器地址

		I			
寄存器地址	PLC或 组态地址	内容	支持 功能码	说明	
0000 H	40001	当前风速值 (单位米每秒)	0x03	实际值10倍	
0001 H	40002	当前风量整数值 (单位m³/h)	0x03	范围0~65535,最大65535, 超过65535显示65535	
0002 H	40003	当前风量浮点型值 高16位(单位m³/h)	0x03		
0003 H	40004	当前风量浮点型值 低16位(单位m³/h)	0x03	一位小数	
0200 H	当前管道截面积 (单位cm2) 0x03/0x06		0x03/0x06	范围0~65535	
07D0 H	42001	设备地址	0x03/0x06	1~254(出厂默认1)	
07D1H	42002	设备波特率	0x03/0x06	0代表2400 1代表4800 2代表9600 3代表19200 4代表38400 5代表57600 6代表115200 7代表1200	

4.4 设备地址设置方式

设备地址支持软件配置和拨码开关设置两种方式,只能选择一种方式设置地址。

当四个拨码开关都拨至"OFF"档,可以通过"配置软件"设置地址。

当四个拨码开关有一个处于"ON"位置时设备地址只能用拨码开关表示的地址,此时软件设置的地址无效,拨码开关设置的地址范围为1~15。

拨码开关设置的地址方式如下所述: 1 代表 ON, 0 代表 OFF。

, • , • <u> </u>	—			
ModBus 地址	1	2	3	
采用软件设置的地址	0	0	0	0
1	0	0	0	1
2	0	0	1	0
				••••
15	1	1	1	1

4.5 通讯协议示例以及解释

4.5.1 读取设备地址 0x01 的风速值

问询帧(16 进制):

地址码	功能码	起始地址	数据长度	校验码低位	校验码高位
0x01	0x03	0x00 0x00	0x00 0x01	0x84	0x0A

应答帧(16 进制): (例如读到风速为 10.8m/s)

地址码	功能码	返回有效字节数	风速值	校验码低位	校验码高位
0x01	0x01 0x03 0x02		0x00 0x6C	0xB8	0x69

风速计算:

风速: 006C H (十六进制)= 108 => 风速 = 10.8m/s

4.5.2 读取设备地址 0x01 的当前管道截面积

问询帧(16进制):

地址码	功能码 起始地址		数据长度	校验码低位	校验码高位	
0x01	01 0x03 0x02 0x00		0x00 0x01	0x85	0xB2	

应答帧(16进制): (例如读到管道截面积为100平方厘米)

I							
	地址码	功能码	返回有效字节数	风速值	校验码低位	校验码高位	
ĺ	0x01	0x03	0x02	0x00 0x64	0x89	0x99	

管道截面积计算:

风速: 0064 H (十六进制)= 100=> 管道截面积 = 100 平方厘米

4.5.3 设置设备地址 0x01 的管道截面积 200 平方厘米

请求帧(16进制):

地址码	功能码	起始地址	数据内容	校验码低位	校验码高位
0x01	0x06	0x02 0x00	0x00 0xC8	0x89	0xE4

应答帧(16 进制): (例如读到管道截面积为 100 平方厘米)

地址码	功能码	起始地址	数据内容	校验码低位	校验码高位
0x01	0x06	0x02 0x00	0x00 0xC8	0x89	0xE4

设置管道截面积计算:

风速: 00C8 H (十六进制)= 200=> 管道截面积 = 200 平方厘米

4.5.4 读取设备地址 0x01 的当前风量整数值

当前风量值计算公式:

当前风量值=当前风速值(单位米每秒)×管道截面积(单位平方厘米)×3600÷10000。 问询帧(16 讲制):

地址码	功能码	起始地址	数据长度	校验码低位	校验码高位
0x01	0x01 0x03 0x00 0x01		0x00 0x01	0xD5	0xCA

应答帧(16 进制): (例如读到风量整数值为 545m³/h)

地址码	功能码	返回有效字节数	风量整数值	校验码低位	校验码高位
0x01	0x03	0x02	0x02 0x21	0x79	0x3C

风量整数值计算:

风量整数值: 0221 H (十六进制)= 545=> 风量整数值 = 545m³/h

4.5.4 读取设备地址 0x01 的当前风量浮点型值

当前风量值计算公式:

当前风量值=当前风速值(单位米每秒)×管道截面积(单位平方厘米)×3600÷10000。 浮点型数据保留一位有效小数位。

问询帧(16进制):

地址码	功能码	起始地址	数据长度	校验码低位	校验码高位
0x01	0x03	0x00 0x02	0x00 0x02	0x65	0xCB

应答帧(16 进制): (例如读到风量浮点值为 545.2m³/h)

地址码	功能码	返回有效	风量浮点型	风量浮点型	校验码低位	校验码高位
76711 円	->J 100 H-J	字节数	高 16 位	低 16 位	1文5些17 [成]立	[
0x01	0x03	0x04	0x44 0x08	0x4C 0xCD	0x9A	0x54

风量浮点值计算:

风量浮点值: 44084CCD H (十六进制)= 545.2=> 风量浮点值 = 545.2m³/h

第 5 章 常见问题及解决方法

无输出或输出错误

可能的原因:

- 1) 电脑有多个COM口,选择的口不正确。
- 2) 设备地址错误,或者存在地址重复的设备(出厂默认全部为1)。
- 3) 波特率,校验方式,数据位,停止位错误。
- 4) 主机轮询间隔和等待应答时间太短,需要都设置在200ms以上。
- 5) 485总线有断开,或者A、B线接反。
- 6) 设备数量过多或布线太长,应就近供电,加485增强器,同时增加120Ω终端 电阻。
- 7) USB转485驱动未安装或者损坏。
- 8) 供电电压不对(交直流型设备供电直流电压应大于19V,交流电压必须为24V(-20%~+10%))。
- 9) 设备损坏。